Overview
PhasorLab uses High-Precision Synchronization Technology, Hyper Sync Net. It can maintain time synchronization of better than one nanosecond and frequency synchronization of better than one ppb, which is key to achieving a centimeter-level target tracking accuracy for network-based positioning systems suitable for indoor & outdoor applications.
Ajackus Partnered with Phasorlab developed a custom model that predicts a 2d image depth up to 10 meters.
Problem
PhasorLab wanted a computer vision solution that augments proprietary high-precision network-based positioning. They also wanted this solution to be usable with a single CCTV camera.
Process
We divided requirements into two major modules,
For body detection, we had to detect a human in an image. We came across many helpful libraries that would help us do this. Mask RCNN is a useful object and instance segmentation library. It gives us good object detection results, and we could pick out the humans detected in the images.
For depth detection, we needed to determine the distance of the human from the camera. Thus depth detection needed to be done on humans from the image input. After a good amount of research on the depth detections algorithms available online, we decided to use the DenseDepth algorithm model for depth detection.
Results
Once the object detection and depth detection is on the image, we extract only the humans’ depth from the image. To do this, we used the instance segmentation of the Mask RCNN object detections & pulled the depth detection of the human in the picture.
We are available in 5 cities and also on the world wide web making us reachable to anyone on the planet with an internet connection.